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Two critical ratios in polymer solutions 
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Abstnd. The interpenetration function 0 of a dilute solution of long randomly coiling 
molecules may be calculated by renormalisation group methods. This quantity is of special 
interest since it is entirely due to excluded volume effects. Two renormalisation methods 
give values for the excluded volume limit of Y which are consistent with current experi- 
mental values. This indicates that the limiting value of Y is easier to measure than 
previously thought. The experimental deviations from this limit can be well represented by 
a simple standard corrections-to-scaling formula. We also calculate the limiting ratio of 
average end-to-end distance to radius of gyration of these molecules. There is a small 
difference from the random chain value. 

1. Introduction 

The ‘excluded volume problem’ concerns those aspects of the behaviour of linear 
random-coil molecules which are akin to a self-avoiding random walk. A few years 
ago de Gennes (1972) and des Cloizeaux (1974, 1975) discovered that a dilute 
solution of these molecules bears a direct relationship to a many-body system near a 
second-order phase transition. In particular both systems have the so called renor- 
malisation group symmetry-their correlations transform irreducibly under a change 
of length scale. This ‘renormalisation’ approach has permitted several ‘critical’ pro- 
perties such as the correlation length exponent v to be calculated for the excluded 
volume problem. 

We consider here the behaviour of the ‘interpenetration function’ Y in the limit of 
long chains. This dimensionless parameter is essentially the second virial coefficient 
AZ measured in units of the molecular weight M and mean-square radius of gyration 
S2 of a chaint: 

where NA is Avogadro’s number. This quantity deserves special attention since it is 
entirely due to excluded volume effects. These same excluded volume effects are 
responsible for the non-trivial renormalisation symmetry and thus Y is a sensitive 
measure of the crucial features of the theory. The ratio Y can be related directly to 
the density-density correlations of the monomer links, and hence it can be measured 
in a light scattering experiment. Up to the present there have been a number of 
non-renormalisation theories (see Yamakawa 1971, 00 21 and 40) of Y, which differ 
t To stick to the conventional definition (see Yamakawa 1971) we have introduced a factor (47r3’*)-’. 
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qualitatively in the long-chain limit (table 1). According to the renormalisation group 
calculations we report below? 9 should attain a value 0.27 within a factor of two. The 
uncertainty in our predictions arises from the approximation methods which assume 
that the dimension of space is near four. We obtain this result by two independent 
methods: a first-principles calculation based on our recent paper (Schafer and Witten 
1977 to be referred to as SWI), and a semi-empirical calculation based on the results of 
Burch and Moore (1976). These authors have calculated the dependence of the 
second virial coefficient A2 and the mean square end-to-end distance R 2  on a certain 
interaction parameter z. Their work relies on an application of an approximate 
renormalisation group method due to Riedel and Wegner (1974). Our results differ 
markedly from most previous predictions, and they lie much closer to values attained 
thus far in experiments (see figure 1). This suggests that the asymptotic limit is readily 
attainable in experiments, if it has not been attained already. This would mean that a 
new fundamental critical ratio had been measured. 

Moreover, the departures from the asymptotic value are governed by renor- 
malisation symmetry. Indeed, the theory of corrections to scaling shows that Y(M)- 
*(CO) should vary for large M as M-"', where wv is calculated (Le Gillou and 
Zinn-Justin 1977) to be 0.465 fO.01. Available experimental data confirm this 
predicted M dependence of '4' and improved measurements could provide much 
needed experimental information on the exponent w. (Current measurements of w in 
phase transitions are crude (Ahlers 1977).) We stress that "(CO) and w can be directly 
measured using only light scattering experiments in a good solvent, without know- 
ledge of the interaction parameter z .  

In the process of calculating Y we obtained a second critical ratio of interest to 
polymer theorists, although it is not currently measurable. This is the ratio of the 
mean-square end-to-end distance R2 to the mean-square radius of gyration S2. We 
obtained a value of 6 x (1-025 f 0.01) which corroborates previous theoretical esti- 
mates (Flory 1949, Orofino and Flory 1957, Stockmayer 1960), but disagrees with 
numerically obtained values (Domb and Hioe 1969). 

Equation (1) defines Y for a monodisperse solution. Our theory gives directly not 
9 itself, but a certain average (Y) measurable in polydisperse solutions (by light 
scattering). To obtain a prediction of 9 we thus estimate the polydispersity depen- 
dence of (Y) in two different ways. In one of these methods we generalise the field 
theory so that it is in principle able to treat monodisperse solutions directly. The other 
method uses L commonly employed van der Waals model, 

2. Calculation for equilibrium polydispersity 

In the standard model (Edwards 1966, Yamakawa 1971) used for excluded volume 
calculations a polymer consists of a set of n monomer coordinates ri, each of which is 
attracted to its successor ri+l by a harmonic potential. There is in addition a finite- 
range potential (the excluded volume interaction) u(ri - Ti) acting between all pairs of 
monomers. Following de Gennes (1972) and des Cloizeaux (1974) we assume a 
distribution of chain lengths n governed by a monomer chemical potential 50. This 
amounts to assuming chemical equilibrium among chains of different lengths. The 

t We reported crude calculations of this quantity in 1977 Bull. Am. Phys. Soc. 22 400 and in 1978 Proc. 
13th Znt. Conf. on Srafistical Physics, Haifa 1977 (Haifa: Israel Physical Society, Bristol: Adam Hilger). 
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partition function Z1 of the chain has the form 
m 

21 = 1 I ddrl . . . ddrn exp( -Xo - D (ri - r j )  - ion) 
n = l  i i  

where Xo contains the harmonic ‘chain potentials’. Our system (see SWI and des 
Cloizeaux 1975) consists of a grand canonical ensemble of such chains with a chain 
chemical potential of the form In (h:). The interaction D acts between, as well as 
within chains. 

The theory is based on a cluster expansion (see, for instance, the monograph of 
Yamakawa 1971) in powers of a positive interaction parameter go proportional to the 
binary cluster integral of two monomers. This cluster expansion can be ‘renormalised’ 
to eliminate the mean distance I between successive monomers. In the process of 
renormalisation the parameters go and LO are substituted by quantities which are 
derived from the values of certain correlation functions at some normalisation point. 
Several equivalent schemes may be found in the literature. (See, for instance, the 
review article of Brezin er a1 (1976, to be referred to as BLZ).) Here we use the 
massless renormalisation scheme of BLZ, in which the normalisation point is chosen to 
be at ho = 0, average chain length N = 03, and finite momentum of the correlation 
functions. 

Invariance of the renormalised theory under change of 1 implies scaling laws which 
hold for large N (i.e. N >> 1) and small average monomer density p (pld << 1). The 
quantity of interest in calculating 9 is the scattering function Io(q), the Fourier 
transform of the autocorrelation of the local monomer density p ( x ) :  

This function obeys the scaling law (see SWI) 

~ o ( q ) =  N ; C , / ~ ( Q ,  sR). 

Here the polymer concentration PIN is denoted by , the overlap SR is defined as 
ldg*cJVf, and the quantity Q is ‘the scaled wavenumber qlNk. The renormalised 
average chain length NR is a fixed multiple of the physical length N. The ‘fixed point 
coupling’ g* takes the place of go within the renormalised theory. This g* vanishes as 
d + 4  and has the expansion (BLZ, equation (9.10); cf remark below figure 10 of BLZ) 

where E = 4 - d. The unrenormalised value .go of the binary cluster integral as well as 
other microscopic quantities like the length 1 of a link influence only the scale of NR.  
This scale measures the strength (for a given temperature and chemical composition) 
of excluded volume effects. The exponent v occuring in these expressions can be 
calculated (Le Guillou and Zinn-Justin 1977) ab initio: Y = 0688*0.001. 

The scaling function j(Q, SR) is calculated by renormalised perturbation theory. 
From our definition of j(Q, sR) and SWI, equation (40) we find 

where 
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This function 9o can in turn be expressed by scaling functions with the help of 
equations (37) and (42) of SWI: 

The functions FLPM are scaling parts of one-line-irreducible vertex functions (see SWI, 
equation (28)), and f ( y ) ,  is related in a simple way to Fo70 (SWI, equation (36)). 
Expressions for f ,  FO”, F0” can be found in the literature (see, for instance, BLZ). In 
the appendix we recall these results together with an outline of our calculation of F1,’ 
and FzSo. The results presented there can be combined with equations (8) and (9) to 
yield 

(10) 
For e = 0 equation (10) yields j in the tree approximation (mean field theory), where 
only diagrams without closed loops are taken into account. 

We now use the relation of Zimm (1948) to define the second virial coefficient A2 
and the average radius of gyration S for a solution of arbitrary polydispersity: 

j (Q,  &=constant [ ~ + ( ~ - % E ) Q ~ + $ ( ~ + % E ) s ~ + O ( S ~ ,  Q4, e’)]. 

I&, c,) = constant c&fz ( 1 -34  1 2 ’  S - 2A2M’cp + * a ) .  (11) 

We can then define the interpenetration function (9) for the equilibrium ensemble. 
Equations (1) and (11) suggest the definition 

where the weight-average chain length Nw is defined as the ratio of the second to the 
first moment of the chain length distribution, and the derivatives are taken with a fixed 
chain length distribution in the limit q, c, -* 0. Now (q) is so constructed that it can be 
expressed in terms of the scaling function j(Q, sR) without any arbitrary factors. From 
the scaling law, equation (4), one verifies that 

The renormalisation symmetry enters this expression in a nontrivial way (through g*) 
even if one uses the trivial mean field result for j (equation (10)). To obtain (q) to 
next order in E we use equation (10) for 1 and equation ( 5 )  for g*: 

8(3.rr)3/2(4.rr)-d’2r-’(~d)(N/Nw)(Y) = &[1 +EE + O(E’)]. (14) 

(Our choice of the prefactor on the left-hand side eliminates the ‘kinematic’ d- 
dependent prefactor in g*). From the large size of the correction term we estimate a 
factor two uncertainty in the result. 

For later use we also calculate the ratio of the radius of gyration S to the 
end-to-end distance R for an isolated chain. This ratio can be expressed in terms of j 
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and an analogous quantity (,$e)-1 describing the end-point correlations (equation 
(A. 11)): 

It can be calculated with the same information which allowed for the calculation of 
(Y). We find 

-- (R2> -2[1-&+O(€2)]. 
(S2) 

3. The influence of the chain length distribution 

Having calculated (q) in the equilibrium chain length distribution we now estimate 
the value of T for a monodisperse solution. This leads us to study the dependence of 
(T) on polydispersity. First we observe that the equilibrium length distribution has 
the form of a Schultz distribution whose exponent y is 1.1615 (Le Guillou and 
Zinn-Justin 1977) in three dimensions, i.e. the probability P N ( ~ )  that a chain has 
length n is given by 

This may be deduced e.g. from the expression for the single chain partition function 
(des Cloizeaux 1974, equation (2.9)) which shows that &(n) equals my-’ exp[n(s,- 
s)]. The unknown parameters z and (s,-s) can be eliminated with the help of the 
relations X,PN(n)= 1 and Z , ~ P N ( ~ ) =  N.  The result (17) follows. For later use we 
note that y = 1 in four dimensions. 

Equation (17) immediately yields the polydispersity dependence of (S2) for a given 
N. Using the fact that S for a given chain varies as its length n to the power Y, one 
obtains 

where the subscripts m and eq stand for monodisperse and equilibrium respectively. 
By similar reasoning, the polydispersity ratio for the end-point distance (R2)  has the 
value 

The polydispersity dependence of ( A z )  may in principle also be calculated in the 
renormalised theory to any given order in e (Schafer and Witten 1978). We shall 
content ourselves here with only the lowest order (tree) approximation, valid in the 
limit E + 0. In that limit the scattering function has the random-phase-approximation 
form (Edwards 1966): 
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where B is an excluded volume potential and l ’ (q ,  c,) is the scattering function of the 
solution without excluded volume effects (i.e. a superposition of random chain scat- 
tering functions (Debye 1947)): 

~ ’ ( q ,  c,) = constant cp4-4 1 PN(n)[e-(q’)zn - 1 + (41)2nl (20‘) 
n 

The function Io(4, c,) should obey the scaling law, equation (4),1 and one may thus 
infer that the scaling function j is given by 

j(Q, SR)= constant($sR+j,(Q)) (21) 

where 

j a l  (a) = Q-4 1 PN(n)[e-Q2n” - 1 + Q2(n/N)]. 
n 

Note that Q 2  = (qlN&)2 = q212N in four dimensions. In deriving equation (21) we 
have eliminated the parameter B by comparing with our previous expression for j 
(equation (10)) taking E -0 and PN(~I )=  (l /N)exp(-n/N) which is the form of the 
equilibrium chain length distribution in four dimensions. Now using equation (17) for 
PN we find the influence of polydispersity on the concentration derivative of lo: 

Again, this result is exact in the limit d + 4, where y + 1. 
The effect of polydispersity on (A2)  can be estimated independently with a simple 

van der Waals model suggested by the form of the scaling law (equation (4)). One 
assumes that each molecule behaves like a hard sphere whose radius varies as n ”. We 
have evaluated the (A2)  ratio of equation (23) in this model (see Yamakawa 1971$, 
p 220, or Casassa 1962). In three dimensions, the (A,)  ratio is 0.524 in the hard 
sphere model, as compared to 0.537 from equation (23). (In four dimensions 
( y  = 1, v = i) the hard-sphere model gives a ratio 10% less than the exact result of 
0.5.) 

Now we may use our estimates equations (18) and (23) to evaluate P for a 
monodisperse solution: 

(24) p=- x ( 0 ~ 2 9 9 ) - ~ ’ ~  x 0.537. 
Nw 

Taking (N/Nw)(9) from equation (14) we find 

‘4’ = 0.268 i 100%. (25) 
The ratio R 2 / S 2  may be found using equation (16) for (R2) / (S2)  and the exact 

correction factors equations (18) and (19). The result, correct to order E ,  is 

RZ (y+2v) (y+2v+l )  E 
Y ( Y  + 1) (1 - - + 0 ( e 2 ) )  96 = 6 x  1.025* 1%. (26) -- 

s2 - 2  

The factor 6 in this result is just the ratio of R 2  to S2 for non-interacting random 

t That the scaling law holds in the same form for general polydispersity is a new result (Schafer and Witten 
1978). 
j: Note that Yamakawa’s v is our 2-  ud =0.236 and that his h is our y = 1.1615. 
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chains and is independent of the dimension d of space (Yamakawa 1971, equation 
(7.17)). For self-avoiding chains the ratio is slightly but significantly altered. Our 
result for R ' / S 2  disagrees with previous values obtained numerically (Domb and Hioe 
1969); the numerical values lie much further from the non-interacting chain value. 

4. Alternative calculation of Q 

In their recent paper Burch and Moore (1976) calculated some quantities closely 
related to Y using the semi-phenomenological approach of Riedel and Wegner 
(1974). Their work may be extended to obtain Y and the value thus obtained agrees 
with our result (equation (25)). Specifically, Burch and Moore calculated in a 
monodisperse ensemble the dimensionless second virial coefficient X(z )  where z is a 
widely used interaction parameter proportional to our go and to N'": 

They also calculated the end-to-end expansion factor (YR (their a )  defined by 

a.',(z)= R2(N,  z ) / R 2 ( N ,  0). (28) 

From these, in the large-z (long-chain) limit one may obtain a quantity closely related 
to Y. Indeed, Y and the interaction z are defined so that 

Y= z + m  lim c ~ ; ~ ( z ) x ( z )  (29) 

where as is the expansion factor for the radius of gyration S (Yamakawa 1971, 
equations (21.17), (21.5), (13.32)). By combining the Burch and Moore expressions 
for X(z), equation (4.25) and equation (5.7), we may obtain the analogous quantity 

Ye= 2 lim -900 ( ~ i ~ ( z ) X ( z ) = 0 . 2 0 8 .  (30) 

In their calculation Burch and Moore have adjusted an (arbitrary) scale factor for 
X ( z )  to assure that X ( z )  = z for small z,  and a scale factor for z has been set so that 
d2X/dz2 has the correct value (Yamakawa 1971, equation (21.7)) at z = 0. Now these 
scale factors may be chosen in alternative ways, and a range of Ye values results. Thus, 
if the scale of z is adjusted to match (YR rather than d2X/dz2 at z + 0 then Ye = 0.1 14; 
if z is adjusted to match Ye(z) itself for small z ,  then Ye = 0.169. 

These three Ye values are consistent with each other within a factor of two. They 
are also consistent with our value of Y, In fact from the definitions of Y and Ye, we 
expect 

From equation (26) this ratio is about 1.04, so that Y should be roughly equal to Ye. 
Now the Ye values based on the paper of Burch and Moore do lie in the same range as 
our value from equation (25). The two independent calculations thus corroborate 
each other. 
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5. Comparison with experiment 

We compare our results with the light scattering data of Berry (1966) and Norisuye er 
a1 (1968). Their results have been analysed to give the interpenetration function as a 
function of the cube of the swelling factor, a: (see Norisuye et a1 1968, Yamakawa 
1971). Our calculation has been concernedonly with the excluded volume limit of the 
function *(a:). The theory of corrections to scaling (Wegner 1972a, b, BLZ, equation 
(8.6)) can be used to determine the form of the leading correction near as = 00. 
According to this theory for large N we expect 

*(N)-*(00)-N--". (32) 

On the other hand, the expansion factor as varies as Nu-' in the excluded volume 
limit (SWI, equation (50)). Combining these relations and assuming that T is a 
universal function of as (Norisuye et a1 1968, Burch and Moore 1976) we find for 
as >> 1, 

(33) - -owI(v- I )  *(a:)- = -*1aS 

where 'PI is a universal constant. Using the results for wv and v quoted above, the 
power of ai is found to be -1.67. Figure 1 shows a crude fit of Berry's data on *(a:) 
using equation (33) witht *(co)=Yl=0.315. We note that the data can be fitted 
surprisingly well by this simple form. Fitting the Norisuye er a1 data in the same way, 
we obtain an equally good fit, using *(a)= = 0.28. It is clear that the data are 
completely consistent with our estimates for *(a), i.e. 0.27 f 100°/~. 

0.34 

0.2- 

W 

0.1 - 

Figwe 1. Interpenetration function Y against a:, the cube of the expansion factor. Open 
circles are data on polystyrene in various solvents (Berry 1966), as given by Yamakawa 
(1971). The full curve is given by equation (33) with Y@)= Y1 = 0.315. 

We have not tried to extract an experimental value for w from the data: the 
experimental uncertainties are too large. A part of these uncertainties is due to 
polydispersity effects. The ratio of the weight average NW to the number average N of 

t The data are not accurate enough to allow for an evaluation of both parameters "(a) and 9 1  indepen- 
dently. The constraint Y(a)=Y, yields an overall fit, which is quite good even outside the asymptotic 
region. 
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the chain length varies from 1.01 to 1.07 in Berry's samples and from 1.11 to 1.21 in 
those of Norisuye er al. Assuming a Schultz distribution and using mean field theory 
(equations (18) and (23)) we can estimate the influence on (*(a)) of this change in 
polydispersity. We find that the dependence of (Y(c0)) on N w / N  is fairly strong: 

This suggests that polydispersity effects can account for about 10% to 15% spread in 
the *-values of figure 1. 

Most previous theoretical interpretations of these data give a qualitatively 
different picture from the above. In table I we list the predictions of the three 
self-consistent theories treated in Yamakawa's book (8 40). The three give widely 
different behaviour, and all suggest that the currently measured 9 values are far below 
any asymptotic limit. All three are more or less consistent with the experimental data 
(see Yamakawa 1971, figures VIII.l l  and VIII.12). We have atso listed two other 
theoretical values of *(a), which are close to the measured values. Finally, we have 
summarised the results of the present work obtained by using the renormalisation 
group (RG) symmetry of the system. The two RG calculations are consistent with each 
other and with the data. They are inconsistent with the three self-consistent theories 
and instead indicate strongly that the current data have attained the asymptotic 
*-value within a few per cent. The RG calculations also suggest that data on "(ai) or 
P(N) with some refinement could yield improved measurements of the critical 
exponent w. The question to be settled now is whether the data have attained the 
asymptotic value or not. 

Table 1. Asymptotic values of Y(a3)  for several theories. 

Method *(a3) 

FO 
FM 
KYT 

0.29 In a3 
0.12 In a3 
0-784+O((a3))-0'21) 

K 
FCM 

0.20 
0.18 

equation (25) 0*27* 100% +O((a3)-''67) 
(A21 0.208 

BM (Vu) 0.169 
(4 0.114 

FO; Orofino and Rory (1957); FM; Stockmayer (1960); KYT, Yamakawa and Tanaka 
(1967); K, Kurata; FCM, Fixmann, Casassa, Markovitz. The values 'K' and 'FCM' are 
taken from figure IV.5 of Yamakawa's monograph. Equation (25) and BM refer to this 
paper. BM: based on the Burch and Moore method adjusted at small z to match the 
quantity given in parentheses. 
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Appendix. Expressions for the scaling functions 

The scaling functions are to be calculated by perturbation theory based on a re- 
normalised Lagrangian density. We follow closely BLZ and we use the massless 
renormalisation scheme explained there. The scaling functions emerge naturally in 
terms of the ‘magnetic’ scaling variables (see SWI, equations (28‘), (28”)) 

(A. l a )  

(A. 1 b)  

where the last quantity is called x in BLZ (above equation (9.25)). The quantities t and 
M are the renormalised temperature and magnetisation, respectively. 

The scaling function f(y) can be taken directly from BLZ, equation (9.25): 

f(y)=y+a+~E($(y+$)[~n(y +$)+1]-2(~+4)[ln(y + ~ ) + I ] ) + O ( E ~ ) .  (A.2) 

Note that the polymer system corresponds to a zero-component field theory (i.e. n = 0 
in BLZ). The expressions for F0’O and FoV2 follow easily from BLZ, equations (9.24) 
and (9.46), setting g = g*, g*M2 = 1, t = our y, p 2  = d2, and i = j = 1: 

fa )  lbi 

Figure 2. One-loop contributions to: (a) Y*’O; and (b) Y*.’. The arrows indicate S2 
insertions. The propagators contain both longitudinal and transverse parts. 

The diagrams contributing to F2*0 and F1,’ are given in figure 2. They yield 

and 

(A&) 

(A.5b) 
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Since to one-loop order Y l V 1  = M + D(b), rzSo = D(=) we find the following results for 
the scaling functions (see SWI, equation (28)): 

F 1 W 9  -6, Y 

(A.lO) 

These results allow for the calculation of j(Q, sR) to the order considered heret. 
To define the end-to-end distance R in the single chain limit we can consider the 

correlations among the ends of arbitrary chains. This correlation function is given by 
(see SWI, equations (43) and (45)) 

( f ( y )  )ud(~0*2(6, -6, y))-l. (A.ll)  1,(4, c,, N )  = constant c ~ N R ~  
2a~'.'/ay 

The function $,(a) occurring in equation (15) is defined as the single-chain limit of le: 
1 

CP-.' c,  $,(a)= constant lim -Ie(q, c,, N )  

(compare SWI, equation (47)). 

(A. 12) 
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